中文词条原文链接(无法从中国内地访问):请点击这里访问
英文词条原文链接(无法从中国内地访问):请点击这里访问
本文基于英文词条的线索,并补充部分来自中文词条的内容(在二者冲突时,以更晚更新者为准)。辽观搬运时进行了必要的合规化处理,以使其能够在中国内地上传。关于辽观的维基百科搬运计划,及其他已搬运的词条,请点击这里了解更多。 维基百科(Wikipedia)是美国维基媒体基金会的互联网百科项目,其内容可能受到立场、信息来源等因素影响,请客观看待。正文内容不代表译者观点。
辽观提供的翻译仅供参考。文中可能包含无法从中国内地访问的链接。
辽观所搬运的词条文本与维基百科一道同样遵循CC BY-SA 4.0协议(辽观搬运的中英文对照版本),在符合协议要求的情况下您可以免费使用其内容(包括商用)。图片和视频可能遵循不同的共享协议。请点击这里访问
目录
1. 正文(发布于知乎专栏)
第一部分(概述、历史、电源)请点击这里访问
第二部分(锂离子电池、电动机、电机功能、载具类型、纪录、电动公共交通效率、事故率、政府激励措施)请点击这里访问
第三部分(特性)请点击这里访问
第四部分(未来、基础设施管理)请点击这里访问
2. 参见(维基百科的相关词条)| See also
- Energy portal【能源主题】/ 能源主题
- Renewable energy portal【可再生能源主题】/ 可再生能源主题
- Technology portal【技术主题】
Cars portal【小汽车主题】
- Environment portal【环境主题】/ 环境主题
- 可持续发展主题
————————————————————
- Electric rickshaw – E-tricycle【电动三轮车 – 电动三轮】
- Neighborhood Electric Vehicle – NEV【社区电动车 – NEV】
- Polluter pays principle【污染者付费原则】
- Alternative fuel vehicle【替代燃料车辆】
- Vehicle classification by propulsion system【按推进系统分类的车辆】
- Personal electric vehicle (PEV)【个人电动车 (PEV)】
3. 英文词条参考文献 | References
- ^ Asif Faiz; Christopher S. Weaver; Michael P. Walsh (1996). Air Pollution from Motor Vehicles: Standards and Technologies for Controlling Emissions. World Bank Publications. p. 227. ISBN 978-0-8213-3444-7. Archived from the original on 4 July 2021. Retrieved 4 December 2017.
- ^ Guarnieri, M. (2012). “Looking back to electric cars”. 2012 Third IEEE HISTory of ELectro-technology CONference (HISTELCON). pp. 1–6. doi:10.1109/HISTELCON.2012.6487583. ISBN 978-1-4673-3078-7. S2CID 37828220.
- ^ Bellis, Mary (16 June 2010). “Inventors – Electric Cars (1890–1930)”. Inventors.about.com. Archived from the original on 4 July 2021. Retrieved 26 December 2010.
- ^ “History of Railway Electric Traction”. Mikes.railhistory.railfan.net. Archived from the original on 24 August 2018. Retrieved 26 December 2010.
- ^ Hendry, Maurice M. Studebaker: One can do a lot of remembering in South Bend. New Albany, Indiana: Automobile Quarterly. pp. 228–275. Vol X, 3rd Q, 1972. p231
- ^ Jump up to:a b Taalbi, Josef; Nielsen, Hana (2021). “The role of energy infrastructure in shaping early adoption of electric and gasoline cars”. Nature Energy. 6 (10): 970–976. Bibcode:2021NatEn…6..970T. doi:10.1038/s41560-021-00898-3. ISSN 2058-7546. S2CID 242383930.
- ^ pp.8–9 Batten, Chris Ambulances Osprey Publishing, 4 March 2008
- ^ “Escaping Lock-in: the Case of the Electric Vehicle”. Cgl.uwaterloo.ca. Archived from the original on 23 September 2015. Retrieved 26 December 2010.
- ^ AAA World Magazine. Jan–Feb 2011, p. 53
- ^ Kirsch, David (2000). The electric vehicle and the burden of history. Rutgers University Press.
- ^ Mom, Gijs (15 February 2013). The Electric Vehicle: Technology and Expectations in the Automobile Age. JHU Press. ISBN 978-1-4214-1268-9.
- ^ See Loeb, A.P., “Steam versus Electric versus Internal Combustion: Choosing the Vehicle Technology at the Start of the Automotive Age,” Transportation Research Record, Journal of the Transportation Research Board of the National Academies, No. 1885, at 1.
- ^ Automobile, archived from the original on 30 April 2015, retrieved 18 July 2009
- ^ Scharff, Virginia (1992). Taking the Wheel: Women and the Coming of the Motor Age. Univ. New Mexico Press.
- ^ Matthe, Roland; Eberle, Ulrich (1 January 2014). The Voltec System – Energy Storage and Electric Propulsion. Elsevier Science. pp. 151–176. ISBN 978-0-444-59513-3. Archived from the original on 9 October 2020. Retrieved 4 May 2014.
- ^ Bellis, M. (2006), “The Early Years”, The History of Electric Vehicles, About.com, archived from the original on 4 July 2021, retrieved 6 July 2006
- ^ “Net Zero Coalition”. United Nations. Retrieved 2 December 2022.
- ^ Quiroga, Tony (August 2009). Driving the Future. Hachette Filipacchi Media U.S., Inc. p. 52.
- ^ Freeman, Sunny (9 December 2009). “The end of Zenn”. The Globe and Mail. Toronto. Retrieved 25 May 2022.
- ^ “Global EV Outlook 2023 / Trends in electric light-duty vehicles”. International Energy Agency. April 2023. Archived from the original on 12 May 2023.
- ^ Data from McKerracher, Colin (12 January 2023). “Electric Vehicles Look Poised for Slower Sales Growth This Year”. BloombergNEF. Archived from the original on 12 January 2023.
- ^ Eberle, Ulrich; von Helmolt, Rittmar (14 May 2010). “Sustainable transportation based on EV concepts: a brief overview”. Energy & Environmental Science. 3 (6): 689. doi:10.1039/c001674h. ISSN 1754-5692. Archived from the original on 21 October 2013. Retrieved 8 June 2010.
- ^ Notter, Dominic A.; Kouravelou, Katerina; Karachalios, Theodoros; Daletou, Maria K.; Haberland, Nara Tudela (3 July 2015). “Life cycle assessment of PEM FC applications: electric mobility and μ-CHP”. Energy Environ. Sci. 8 (7): 1969–1985. doi:10.1039/C5EE01082A. ISSN 1754-5692.
- ^ Notter, Dominic A.; Gauch, Marcel; Widmer, Rolf; Wäger, Patrick; Stamp, Anna; Zah, Rainer; Althaus, Hans-Jörg (1 September 2010). “Contribution of Li-Ion Batteries to the Environmental Impact of Electric Vehicles”. Environmental Science & Technology. 44 (17): 6550–6556. Bibcode:2010EnST…44.6550N. doi:10.1021/es903729a. ISSN 0013-936X. PMID 20695466.
- ^ “World’s first electrified road for charging vehicles opens in Sweden”. Guardian. 12 April 2018. Archived from the original on 1 September 2019. Retrieved 1 September 2019.
- ^ Richardson, D.B. (March 2013). “Electric vehicles and the electric grid: A review of modeling approaches, Impacts, and renewable energy integration”. Renewable and Sustainable Energy Reviews. 19: 247–254. doi:10.1016/j.rser.2012.11.042.
- ^ Liu, Chaofeng; Neale, Zachary G.; Cao, Guozhong (1 March 2016). “Understanding electrochemical potentials of cathode materials in rechargeable batteries”. Materials Today. 19 (2): 109–123. doi:10.1016/j.mattod.2015.10.009.
- ^ Jump up to:a b “Race to Net Zero: The Pressures of the Battery Boom in Five Charts”. 21 July 2022. Archived from the original on 7 September 2023.
- ^ Medimorec, Nikola (8 February 2013). “Namsan E-Bus, First Commercial Electric Bus Worldwide”. Kojects.
- ^ Armand, Michel; Axmann, Peter; Bresser, Dominic; Copley, Mark; Edström, Kristina; Ekberg, Christian; Guyomard, Dominique; Lestriez, Bernard; Novák, Petr; Petranikova, Martina; Porcher, Willy; Trabesinger, Sigita; Wohlfahrt-Mehrens, Margret; Zhang, Heng (15 December 2020). “Lithium-ion batteries – Current state of the art and anticipated developments”. Journal of Power Sources. 479: 228708. Bibcode:2020JPS…47928708A. doi:10.1016/j.jpowsour.2020.228708. ISSN 0378-7753. S2CID 225154703.
- ^ Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. (2013). “A review on the key issues for lithium-ion battery management in electric vehicles”. Journal of Power Sources. 226: 272–288. Bibcode:2013JPS…226..272L. doi:10.1016/j.jpowsour.2012.10.060. ISSN 0378-7753.
- ^ Adany, Ron (June 2013). “Switching algorithms for extending battery life in Electric Vehicles”. Journal of Power Sources. 231: 50–59. doi:10.1016/j.jpowsour.2012.12.075. ISSN 0378-7753.
- ^ Mok, Brian. “Types of Batteries Used for Electric Vehicles”. large.stanford.edu. Archived from the original on 19 December 2017. Retrieved 30 November 2017.
- ^ “Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles”. afdc.energy.gov. AFDC. Archived from the original on 1 December 2017. Retrieved 30 November 2017.
- ^ “Chevron and EVs – GM, Chevron and CARB killed the sole NiMH EV once, will do so again”. ev1.org. Archived from the original on 22 November 2017. Retrieved 30 November 2017.
- ^ Aditya, Jayam; Ferdowsi, Mehdi. “Comparison of NiMH and Li-Ion Batteries in Automotive Applications”. Power Electronics and Motor Drives Laboratory. Archived from the original on 1 December 2017. Retrieved 30 November 2017.
- ^ “Global EV Outlook 2023 – Data product”. IEA. Retrieved 30 June 2023.
- ^ “Bloomberg’s Latest Forecast Predicts Rapidly Falling Battery Prices”. 21 June 2018. Archived from the original on 8 January 2019. Retrieved 4 January 2019.
- ^ Voelcker, John (10 April 2021). “EVs Explained: Charging Losses”. Car and Driver. Archived from the original on 27 July 2021. Retrieved 27 July 2021.
- ^ Widmar, Martin (2015). “Electric vehicle traction motors without rare earth magnets”. Sustainable Materials and Technologies. 3: 7–13. doi:10.1016/j.susmat.2015.02.001. ISSN 2214-9937.
- ^ “Electric Driveline Technology – PVI, leader de la traction électrique pour véhicules industriels”. Pvi.fr. Archived from the original on 25 March 2012. Retrieved 30 March 2012.
- ^ “History of Hybrid Vehicles”. HybridCars.com. 27 March 2006. Archived from the original on 8 February 2009. Retrieved 21 March 2010.
- ^ “Alternative Fuels Data Center: How do Hybrid Electric Cars Work?”.
- ^ Spendiff-Smith, Matthew (18 March 2022). “Electric Vehicles Types – A Complete Guide to Types of EV – EVESCO”. Power Sonic.
- ^ Jump up to:a b Dan Mihalascu (4 November 2022). “Turkey’s National Carmaker Togg Starts Production Of 2023 C SUV EV”. insideevs.com.
- ^ “TOGG Official Website”. togg.com.tr. Retrieved 3 April 2020.
- ^ Jay Ramey (30 December 2019). “Turkey Bets on EVs with the Pininfarina-Designed TOGG”. autoweek.com.
- ^ “‘A game changer’: Türkiye inaugurates its first national car plant”. TRT World. 30 October 2022.
- ^ David B. Sandalow, ed. (2009). Plug-In Electric Vehicles: What Role for Washington? (1st. ed.). The Brookings Institution. pp. 2–5. ISBN 978-0-8157-0305-1. Archived from the original on 28 March 2019. Retrieved 7 July 2013. See definition on pp. 2.
- ^ “Plug-in Electric Vehicles (PEVs)”. Center for Sustainable Energy, California. Archived from the original on 20 June 2010. Retrieved 31 March 2010.
- ^ “PEV Frequently Asked Questions”. Duke Energy. Archived from the original on 27 March 2012. Retrieved 24 December 2010.
- ^ “Electric road vehicles in the European Union” (PDF). europa.eu. Archived (PDF) from the original on 14 February 2020. Retrieved 24 October 2020.
- ^ “-Maglev Technology Explained”. North American Maglev Transport Institute. 1 January 2011. Archived from the original on 27 July 2011.
- ^ “Oceanvolt – Complete Electric Motor Systems”. Oceanvolt. Archived from the original on 24 December 2012. Retrieved 30 November 2012.
- ^ Stensvold, Tore. “Lønnsomt å bytte ut 70 prosent av fergene med batteri- eller hybridferger Archived 5 January 2016 at the Wayback Machine” Teknisk Ukeblad, 14. August 2015.
- ^ “S-80: A Sub, for Spain, to Sail Out on the Main”. Defense Industry Daily. 15 December 2008. Archived from the original on 24 February 2010. Retrieved 17 December 2009.
- ^ “Ports of Auckland Sparky: The 200 Best Inventions of 2022”. Time. 10 November 2022. Retrieved 26 March 2024.
- ^ Mandra, Jasmina Ovcina (27 October 2023). “Electrifying Debut: HaiSea Wamis completes its 1st tanker escort with full electric power”. Offshore Energy. Retrieved 26 March 2024.
- ^ “The little (electric) engine that could: The Port of San Diego unveils the nation’s first all-electric tug boat”. San Diego Union-Tribune. 11 March 2024. Retrieved 26 March 2024.
- ^ “Contributions to Deep Space 1”. 14 April 2015. Archived from the original on 10 December 2004. Retrieved 4 August 2016.
- ^ Cybulski, Ronald J.; Shellhammer, Daniel M.; Lovell, Robert R.; Domino, Edward J.; Kotnik, Joseph T. (1965). “Results from SERT I Ion Rocket Flight Test” (PDF). NASA. NASA-TN-D-2718. Archived (PDF) from the original on 12 November 2020. Retrieved 12 November 2020.
- ^ Lyons, Pete; “10 Best Ahead-of-Their-Time Machines”, Car and Driver, Jan. 1988, p.78
- ^ “Technologies of Broad Benefit: Power”. Archived from the original on 18 January 2017. Retrieved 6 September 2018.
- ^ “Soviet Union Lunar Rovers”. Archived from the original on 2 November 2018. Retrieved 6 September 2018.
- ^ Ulrich, Lawrence. “Rimac Nevera EV Sets 23 World Speed Records: Zero to 400 kilometers per hour and back again in under 30 seconds was just one of them”. IEEE Spectrum.
- ^ Doll, Scooter. “Rimac Nevera electric hypercar sets 23 records in single day, including fastest 0–249 mph time”. Electrek.
- ^ Addow, Amina. “Electric car goes from 0 to 100 km/h in 1.461 seconds”. Guinness World Records.
- ^ “interestingengineering.com”. November 2021.
- ^ Holl, Maximilian (5 July 2019). “Tesla Model 3 Breaks World EV Distance Record — 2,781 km (1,728 mi) Travelled in 24 Hours”. CleanTechnica. Retrieved 15 May 2022.
- ^ “Greatest distance by electric vehicle, single charge (non-solar)”. Guinness World Records. 16 October 2017. Retrieved 15 May 2022.
- ^ Jamieson, Craig. “This solar-powered EV is a world-record-breaking speed machine*”. BBC Top Gear. BBC Studios.
- ^ “Harley-Davidson’s LiveWire EV | GreenCars”. www.greencars.com. Retrieved 15 May 2022.
- ^ Toll, Micah (29 August 2020). “Believe it or not, this electric plane is set to break 7 world records in one trip”. Electrek. Retrieved 15 May 2022.
- ^ Seitz, C.W. (May 1994). “Industrial battery technologies and markets”. IEEE Aerospace and Electronic Systems Magazine. 9 (5): 10–15. doi:10.1109/62.282509. ISSN 0885-8985. Retrieved 3 September 2022.
- ^ Tofield, Bruce C. (1985). “Future Prospects for All-Solid-State Batteries”. Solid State Batteries. Springer Netherlands. p. 424. doi:10.1007/978-94-009-5167-9_29. ISBN 978-94-010-8786-5. Retrieved 3 September 2022.
- ^ “EVO Report 2021 | BloombergNEF | Bloomberg Finance LP”. BloombergNEF. Archived from the original on 27 July 2021. Retrieved 27 July 2021.
- ^ Dobley, Arthur (2013). “1: Catalytic Batteries”. In Suib, Steven (ed.). New and Future Developments in Catalysis: Batteries, Hydrogen Storage and Fuel Cells. Elsevier. p. 13. ISBN 9780444538819. Retrieved 29 October 2022.
- ^ Jump up to:a b c d e D Bateman; et al. (8 October 2018), Electric Road Systems: a solution for the future (PDF), TRL, archived (PDF) from the original on 3 August 2020, retrieved 10 February 2021
- ^ Jump up to:a b c d e Analysera förutsättningar och planera för en utbyggnad av elvägar, Swedish Transport Administration, 2 February 2021, archived from the original on 3 February 2021, retrieved 10 February 2021
- ^ Regler för statliga elvägar SOU 2021:73 (PDF), Regeringskansliet (Government Offices of Sweden), 1 September 2021, pp. 69–87, archived from the original (PDF) on 2 September 2021
- ^ European Commission (14 July 2021), Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the deployment of alternative fuels infrastructure, and repealing Directive 2014/94/EU of the European Parliament and of the Council
- ^ Patrick Pélata; et al. (July 2021), Système de route électrique. Groupe de travail n°1 (PDF), archived from the original (PDF) on 21 October 2021
- ^ “PD CLC/TS 50717 Technical Requirements for Current Collectors for ground-level feeding system on road vehicles in operation”, The British Standards Institution, 2022, archived from the original on 2 January 2023, retrieved 2 January 2023
- ^ Final draft: Standardization request to CEN-CENELEC on ‘Alternative fuels infrastructure’ (AFI II) (PDF), European Commission, 2 February 2022, archived from the original (PDF) on 8 April 2022, retrieved 2 January 2023
- ^ Matts Andersson (4 July 2022), Regulating Electric Road Systems in Europe – How can a deployment of ERS be facilitated? (PDF), CollERS2 – Swedish German research collaboration on Electric Road Systems
- ^ Choi, Yun Seok; Kim, Seok; Choi, Soo Seok; Han, Ji Sung; Kim, Jan Dee; Jeon, Sang Eun; Jung, Bok Hwan (30 November 2004). “Electrochimica Acta : Effect of cathode component on the energy density of lithium–sulfur battery”. Electrochimica Acta. 50 (2–3): 833–835. doi:10.1016/j.electacta.2004.05.048.
- ^ Jump up to:a b c d “Global EV Outlook 2023 – Analysis”. IEA. 26 April 2023. Retrieved 5 July 2023.
- ^ “EUROPA Press Releases – Car safety: European Commission welcomes international agreement on electric and hybrid cars”. Europa (web portal). 10 March 2010. Archived from the original on 16 April 2010. Retrieved 26 June 2010.
- ^ Ziegler, Micah S.; Trancik, Jessika E. (2021). “Re-examining rates of lithium-ion battery technology improvement and cost decline”. Energy & Environmental Science. 14 (4): 1635–1651. arXiv:2007.13920. doi:10.1039/D0EE02681F. ISSN 1754-5692. S2CID 220830992.
- ^ “The price of batteries has declined by 97% in the last three decades”. Our World in Data. Retrieved 26 April 2022.
- ^ Garcia, Erika; Johnston, Jill; McConnell, Rob; Palinkas, Lawrence; Eckel, Sandrah P. (1 April 2023). “California’s early transition to electric vehicles: Observed health and air quality co-benefits”. Science of the Total Environment. 867: 161761. Bibcode:2023ScTEn.867p1761G. doi:10.1016/j.scitotenv.2023.161761. ISSN 0048-9697. PMC 10465173. PMID 36739036. S2CID 256572849.
- ^ Michalek; Chester; Jaramillo; Samaras; Shiau; Lave (2011). “Valuation of plug-in vehicle life cycle air emissions and oil displacement benefits”. Proceedings of the National Academy of Sciences. 108 (40): 16554–16558. Bibcode:2011PNAS..10816554M. doi:10.1073/pnas.1104473108. PMC 3189019. PMID 21949359.
- ^ Tessum; Hill; Marshall (2014). “Life cycle air quality impacts of conventional and alternative light-duty transportation in the United States”. Proceedings of the National Academy of Sciences. 111 (52): 18490–18495. Bibcode:2014PNAS..11118490T. doi:10.1073/pnas.1406853111. PMC 4284558. PMID 25512510.
- ^ “A global comparison of the life-cycle greenhouse gas emissions of combustion engine and electric passenger cars | International Council on Clean Transportation”. theicct.org. Archived from the original on 9 November 2021. Retrieved 29 July 2021.
- ^ Choma, Ernani F.; Evans, John S.; Hammitt, James K.; Gómez-Ibáñez, José A.; Spengler, John D. (1 November 2020). “Assessing the health impacts of electric vehicles through air pollution in the United States”. Environment International. 144: 106015. Bibcode:2020EnInt.14406015C. doi:10.1016/j.envint.2020.106015. ISSN 0160-4120. PMID 32858467.
- ^ Gössling, Stefan (3 July 2020). “Why cities need to take road space from cars – and how this could be done”. Journal of Urban Design. 25 (4): 443–448. doi:10.1080/13574809.2020.1727318. ISSN 1357-4809.
- ^ “e-bike carbon savings – how much and where? – CREDS”. 18 May 2020. Archived from the original on 13 April 2021. Retrieved 13 April 2021.
- ^ “Electric Cars Need Way Less Raw Materials Than ICE Vehicles”. InsideEVs. Archived from the original on 28 July 2021. Retrieved 28 July 2021.
- ^ Jump up to:a b Agusdinata, Datu Buyung; Liu, Wenjuan; Eakin, Hallie; Romero, Hugo (27 November 2018). “Socio-environmental impacts of lithium mineral extraction: towards a research agenda”. Environmental Research Letters. 13 (12): 123001. Bibcode:2018ERL….13l3001B. doi:10.1088/1748-9326/aae9b1. ISSN 1748-9326.
- ^ Schöggl, Josef-Peter; Fritz, Morgane M.C.; Baumgartner, Rupert J. (September 2016). “Toward supply chain-wide sustainability assessment: a conceptual framework and an aggregation method to assess supply chain performance”. Journal of Cleaner Production. 131: 822–835. doi:10.1016/j.jclepro.2016.04.035. ISSN 0959-6526.
- ^ Jump up to:a b “Electric car batteries need far less raw materials than fossil-fuel cars – study Archived 2 November 2021 at the Wayback Machine“. transportenvironment.org. Retrieved 1 November 2021.
- ^ “Energy Technology Perspectives 2023 – Analysis”. IEA. 12 January 2023. Retrieved 30 June 2023.
- ^ “Myths Shattered: The Truth About Electric Cars in Today’s Auto Industry”. Greenpeace international. Retrieved 21 November 2023.
- ^ Mitchell G, Dorling D. An Environmental Justice Analysis of British Air Quality. Environment and Planning A: Economy and Space. 2003;35(5):909–929. doi:10.1068/a35240
- ^ Barnes, Joanna H.; Chatterton, Tim J.; Longhurst, James W.S. (August 2019). “Emissions vs exposure: Increasing injustice from road traffic-related air pollution in the United Kingdom”. Transportation Research Part D: Transport and Environment. 73: 56–66. doi:10.1016/j.trd.2019.05.012. S2CID 197455092.
- ^ “Better Place” (PDF).[permanent dead link]
- ^ Jump up to:a b “Transport: Electric vehicles”. European Commission. Archived from the original on 19 March 2011. Retrieved 19 September 2009.
- ^ “Nissan Adds ‘Beautiful’ Noise to Make Silent Electric Cars Safe”. Bloomberg L.P. 18 September 2009. Retrieved 12 February 2010.
- ^ “Our Electric Future – The American, A Magazine of Ideas”. American.com. Archived from the original on 25 August 2014. Retrieved 26 December 2010.
- ^ Lepetit, Yoann (October 2017). “Electric vehicle life cycle analysis and raw material availability” (PDF). Transport & Environment. Archived (PDF) from the original on 23 February 2018. Retrieved 22 February 2018.
- ^ “2020 European total cost of ownership for electric vehicles vs internal combustion engine vehicles | Nickel Institute”. nickelinstitute.org. Archived from the original on 26 July 2021. Retrieved 26 July 2021.
- ^ “Electric cars already cheapest option today for many consumers, new study finds | www.beuc.eu”. www.beuc.eu. Archived from the original on 26 July 2021. Retrieved 26 July 2021.
- ^ “Trends and developments in electric vehicle markets – Global EV Outlook 2021 – Analysis”. IEA. Archived from the original on 26 July 2021. Retrieved 26 July 2021.
- ^ Guillaume, Gilles; Piovaccari, Giulio (27 July 2023). “Western car makers look to slash EV costs to fight Chinese ‘invasion'”. Reuters.
- ^ “Explaining Electric & Plug-In Hybrid Electric Vehicles | US EPA”. US EPA. 17 August 2015. Archived from the original on 12 June 2018. Retrieved 8 June 2018.
- ^ “Electric vehicle price is rising, but cost-per-mile is falling”. Ars Technica. Archived from the original on 4 June 2018. Retrieved 8 June 2018.
- ^ Beedham, Matthew (3 February 2021). “What’s a heat pump and why do EVs use them?”. TNW | Shift. Archived from the original on 28 July 2021. Retrieved 28 July 2021.
- ^ “Heat pumps in electric vehicles: What are they for? | Inquieto”. 26 July 2023. Retrieved 5 November 2023.
- ^ “Trams, energy saving, private cars, trolley buses, diesel buses | Claverton Group”. Claverton-energy.com. 28 May 2009. Archived from the original on 19 September 2009. Retrieved 19 September 2009.
- ^ “SUSTAINABLE LIGHT RAIL | Claverton Group”. Claverton-energy.com. 21 November 2008. Archived from the original on 16 September 2009. Retrieved 19 September 2009.
- ^ “Blackpool Trams – Then and Now • the seaside way to travel – with Live Blackpool”. Blackpool. 9 September 2020. Archived from the original on 30 October 2020. Retrieved 26 November 2020.
- ^ Searles, Michael (22 May 2024). “Electric cars ‘hit pedestrians at twice the rate of petrol or diesel vehicles'”. The Telegraph. ISSN 0307-1235. Retrieved 13 June 2024.
- ^ “EESL to procure 10,000 Electric Vehicles from TATA Motors”. pib.nic.in. Archived from the original on 8 February 2018. Retrieved 7 February 2018.
- ^ Balachandran, Manu. “As India revs up its grand electric vehicles plan, Tata and Mahindra are in the driver’s seat”. Quartz. Archived from the original on 8 February 2018. Retrieved 7 February 2018.
- ^ “5 things to know about the future of electric vehicles”. World Economic Forum. 12 May 2021. Archived from the original on 16 June 2021. Retrieved 7 June 2021.
- ^ “Accelerating the Transition to Electric School Buses | U.S. PIRG Education Fund”. uspirgedfund.org. Archived from the original on 29 July 2021. Retrieved 29 July 2021.
- ^ Jump up to:a b “2021–2022 EIB Climate Survey, part 2 of 3: Shopping for a new car? Most Europeans say they will opt for hybrid or electric”. EIB.org. Retrieved 4 April 2022.
- ^ Spencer, Alison; Ross, Stephanie; Tyson, Alec. “How Americans view electric vehicles”. Pew Research Center. Retrieved 9 December 2023.
- ^ Jump up to:a b Bank, European Investment (5 June 2023). The EIB Climate Survey: Government action, personal choices and the green transition. European Investment Bank. ISBN 978-92-861-5535-2.
- ^ “Zeroing in on Healthy Air”. American Lung Association. 2022.
- ^ Xiong, Ying; Partha, Debatosh; Prime, Noah; Smith, Steven J; Mariscal, Noribeth; Salah, Halima; Huang, Yaoxian (1 October 2022). “Long-term trends of impacts of global gasoline and diesel emissions on ambient PM 2.5 and O 3 pollution and the related health burden for 2000–2015”. Environmental Research Letters. 17 (10): 104042. Bibcode:2022ERL….17j4042X. doi:10.1088/1748-9326/ac9422. ISSN 1748-9326. S2CID 252471791.
- ^ Carey, John (17 January 2023). “The other benefit of electric vehicles”. Proceedings of the National Academy of Sciences. 120 (3): e2220923120. Bibcode:2023PNAS..12020923C. doi:10.1073/pnas.2220923120. ISSN 0027-8424. PMC 9934249. PMID 36630449.
- ^ Månberger, André; Stenqvist, Björn (August 2018). “Global metal flows in the renewable energy transition: Exploring the effects of substitutes, technological mix and development”. Energy Policy. 119: 226–241. Bibcode:2018EnPol.119..226M. doi:10.1016/j.enpol.2018.04.056. S2CID 52227957.
- ^ “Move to net zero ‘inevitably means more mining'”. BBC News. 24 May 2021. Archived from the original on 4 June 2021. Retrieved 4 June 2021.
- ^ Ewing, Jack; Krauss, Clifford (20 March 2023). “Falling Lithium Prices Are Making Electric Cars More Affordable”. The New York Times. ISSN 0362-4331. Retrieved 12 April 2023.
- ^ Buberger, Johannes; Kersten, Anton; Kuder, Manuel; Eckerle, Richard; Weyh, Thomas; Thiringer, Torbjörn (1 May 2022). “Total CO2-equivalent life-cycle emissions from commercially available passenger cars”. Renewable and Sustainable Energy Reviews. 159: 112158. doi:10.1016/j.rser.2022.112158. ISSN 1364-0321. S2CID 246758071.
- ^ Halper, Evan (5 April 2023). “Unleash the deep-sea robots? A quandary as EV makers hunt for metals”. Washington Post. ISSN 0190-8286. Retrieved 9 April 2023.
- ^ Korosec, Kirsten. “Panasonic boosts energy density, trims cobalt in new 2170 battery cell for Tesla” Archived 29 August 2020 at the Wayback Machine, July 30, 2020
- ^ “Daimler deepens CATL alliance to build long-range, fast-charging EV batteries” Archived 23 August 2020 at the Wayback Machine, Reuters, August 5, 2020; and “Porsche: The perfect cell” Archived 25 November 2020 at the Wayback Machine, Automotive World, August 28, 2020
- ^ Baum, Zachary J.; Bird, Robert; Yu, Xiang; Ma, Jia (14 October 2022). “Correction to “Lithium-Ion Battery Recycling─Overview of Techniques and Trends””. ACS Energy Letters. 7 (10): 3268–3269. doi:10.1021/acsenergylett.2c01888. ISSN 2380-8195.
- ^ Martinez-Laserna, E.; Gandiaga, I.; Sarasketa-Zabala, E.; Badeda, J.; Stroe, D. -I.; Swierczynski, M.; Goikoetxea, A. (1 October 2018). “Battery second life: Hype, hope or reality? A critical review of the state of the art”. Renewable and Sustainable Energy Reviews. 93: 701–718. doi:10.1016/j.rser.2018.04.035. ISSN 1364-0321. S2CID 115675123.
- ^ Patel, Prachi. “Ion Storage Systems Says Its Ceramic Electrolyte Could Be a Gamechanger for Solid-State Batteries” Archived 29 September 2020 at the Wayback Machine, IEEE.org, February 21, 2020
- ^ Lambert, Fred. “Tesla researchers show path to next-gen battery cell with breakthrough energy density” Archived 24 August 2020 at the Wayback Machine, Electrek, August 12, 2020
- ^ Horn, Michael; MacLeod, Jennifer; Liu, Meinan; Webb, Jeremy; Motta, Nunzio (March 2019). “Supercapacitors: A new source of power for electric cars?” (PDF). Economic Analysis and Policy. 61: 93–103. doi:10.1016/j.eap.2018.08.003. S2CID 187458469.
- ^ “Calculating the total cost of ownership for electric trucks”. Transport Dive. Retrieved 27 February 2021.
- ^ “Electric trucking offers fleets ergonomic efficiency potential | Automotive World”. www.automotiveworld.com. 11 January 2021. Retrieved 27 February 2021.
- ^ Adler, Alan (8 March 2019). “2019 Work Truck Show: Adoption of Electrification Won’t be Fast”. Trucks.com. Retrieved 4 April 2019.
- ^ Edelstein, Stephen (17 December 2020). “EV battery pack prices fell 13% in 2020, some are already below $100/kwh”. Green Car Reports. Retrieved 13 June 2021.
Electric-car battery-pack prices have fallen 13% in 2020, in some cases reaching a crucial milestone for affordability, according to an annual report released Wednesday by Bloomberg New Energy Finance. Average prices have dropped from $1,100 per kilowatt-hour to $137 per kwh, decrease of 89% over the past decade, according to the analysis. At this time last year, BNEF reported an average price of $156 per kwh—itself a 13% decrease from 2018. Battery-pack prices of less than $100 per kwh were also reported for the first time, albeit only for electric buses in China, according to BNEF. The $100-per-kwh threshold is often touted by analysts as the point where electric vehicles will achieve true affordability. Batteries also achieved $100 per kwh on a per-cell basis, while packs actually came in at $126 per kwh on a volume-weighted average, BNEF noted.
- ^ Domonoske, Camila (17 March 2021). “From Amazon To FedEx, The Delivery Truck Is Going Electric”. National Public Radio. Retrieved 13 June 2021.
All major delivery companies are starting to replace their gas-powered fleets with electric or low-emission vehicles, a switch that companies say will boost their bottom lines, while also fighting climate change and urban pollution. UPS has placed an order for 10,000 electric delivery vehicles. Amazon is buying 100,000 from the start-up Rivian. DHL says zero-emission vehicles make up a fifth of its fleet, with more to come. And FedEx just pledged to replace 100% of its pickup and delivery fleet with battery-powered vehicles.
- ^ Joselow, Maxine (11 January 2020). “Delivery Vehicles Increasingly Choke Cities with Pollution”. Scientific American. Retrieved 13 June 2021.
Electric vehicles, delivery drones and rules on when delivery trucks can operate are some solutions proposed in a new report. The report provides 24 recommendations for policymakers and the private sector, including mandating that delivery vehicles are electric. The report notes that if policymakers care about sustainability, they may want to impose aggressive new electric vehicle regulations.
- ^ Gies, Erica (18 December 2017). “Electric Trucks Begin Reporting for Duty, Quietly and Without All the Fumes”. Inside Climate News. Retrieved 13 June 2021.
Replacing fleets of medium- and heavy-duty trucks can help cut greenhouse gas emissions and make cities quieter and cleaner. Because trucks need so much hauling power, they have eluded electrification until recently; a battery that could pull significant weight would itself be too hefty and too expensive. But now, improvements in battery technology are paying off, bringing down both size and cost. The number of hybrid-electric and electric trucks is set to grow almost 25 percent annually, from 1 percent of the market in 2017 to 7 percent in 2027, a jump from about 40,000 electric trucks worldwide this year to 371,000.
- ^ Hyundai Porter/Porter II Electric: 9037. Kia Bongo EV: 5357. Domestically produced trucks sold in the country: 188222. mk.co.kr autoview.co.kr zdnet.co.kr
- ^ Jump up to:a b “Germany launches world’s first hydrogen-powered train”. The Guardian. Agence France-Presse. 17 September 2018. Archived from the original on 17 September 2018. Retrieved 29 November 2018.
- ^ “L’Occitanie, première région à commander des trains à hydrogène à Alstom”. France 3 Occitanie (in French). Archived from the original on 29 November 2018. Retrieved 29 November 2018.
- ^ “La constructora Alstom quiere ir por el ‘tramo ecológico’ del Tren Maya”. El Financiero (in Spanish). Archived from the original on 29 November 2018. Retrieved 29 November 2018.
- ^ “SNCF : Pépy envisage la fin des trains diesel et l’arrivée de l’hydrogène en 2035”. La Tribune (in French). Archived from the original on 29 November 2018. Retrieved 29 November 2018.
- ^ “SNCF : Pépy envisage la fin des trains diesel et l’arrivée de l’hydrogène en 2035”. La Tribune (in French). Archived from the original on 29 November 2018. Retrieved 29 November 2018.
- ^ “New Mexico law seeks solar on every roof, and an EV charger in every garage”. pv magazine USA. 25 January 2023.
- ^ “Buy Nema 14–50 EV Charger – Lectron”. Lectron EV.
- ^ “NeoCharge”.
- ^ General Motors will add bidirectional charging to its Ultium-based EVs by Jonathan M. Gitlin, on Ars Technica, 8/8/2023.
- ^ Barbecho Bautista, Pablo; Lemus Cárdenas, Leticia; Urquiza Aguiar, Luis; Aguilar Igartua, Mónica (2019). “A traffic-aware electric vehicle charging management system for smart cities”. Vehicular Communications. 20: 100188. doi:10.1016/j.vehcom.2019.100188. hdl:2117/172770. S2CID 204080912.
- ^ Fernandez Pallarés, Victor; Cebollada, Juan Carlos Guerri; Martínez, Alicia Roca (2019). “Interoperability network model for traffic forecast and full electric vehicles power supply management within the smart city”. Ad Hoc Networks. 93: 101929. doi:10.1016/j.adhoc.2019.101929. S2CID 196184613.
- ^ Liasi, Sahand Ghaseminejad; Golkar, Masoud Aliakbar (2017). “Electric vehicles connection to microgrid effects on peak demand with and without demand response”. 2017 Iranian Conference on Electrical Engineering (ICEE). pp. 1272–1277. doi:10.1109/IranianCEE.2017.7985237. ISBN 978-1-5090-5963-8. S2CID 22071272.
- ^ “It’s not just cars driving the EV revolution in emerging markets”. www.schroders.com. Retrieved 12 April 2023.
Beyond grid stabilisation benefits, smart charging of EVs, using differentiated electricity tariffs in off-peak hours, may also mitigate the pressure on electricity demand. That’s because vehicles can be charged during the day, when demand is lower and renewables generation is available.
- ^ Shafie-khah, Miadreza; Heydarian-Forushani, Ehsan; Osorio, Gerardo J.; Gil, Fabio A. S.; Aghaei, Jamshid; Barani, Mostafa; Catalao, Joao P. S. (November 2016). “Optimal Behavior of Electric Vehicle Parking Lots as Demand Response Aggregation Agents”. IEEE Transactions on Smart Grid. 7 (6): 2654–2665. doi:10.1109/TSG.2015.2496796. ISSN 1949-3053. S2CID 715959.
- ^ “It’s not just cars driving the EV revolution in emerging markets”. www.schroders.com. Retrieved 12 April 2023.
Intermittency from solar or wind technologies can put creating voltage and frequency variations. Batteries can charge and discharge to stabilise the grid in such instances. The batteries of electric vehicles, e-buses or electric two-wheelers, while connected to the grid, could therefore play a role in protecting a grid’s stability.
- ^ “Engines and Gas Turbines | Claverton Group”. Claverton-energy.com. 18 November 2008. Archived from the original on 6 September 2009. Retrieved 19 September 2009.
- ^ National Grid’s use of Emergency. Diesel Standby Generator’s in dealing with grid intermittency and variability. Potential Contribution in assisting renewables Archived 17 February 2010 at the Wayback Machine, David Andrews, Senior Technical Consultant, Biwater Energy, A talk originally given by as the Energy Manager at Wessex Water at an Open University Conference on Intermittency, 24 January 2006
- ^ Nick Carey; Josie Kao and Louise Heavens. (5 July 2023). “EV batteries remain major challenge for insurers – UK’s Thatcham”. Reuters website Retrieved 5 July 2023.
- ^ Nick Carey. (27 June 2023). “UK firm Metis touts battery sensor that could ease EV scrappage problem”. Reuters website Retrieved 5 July 2023.
4. 中文词条参考文献
- Asif Faiz; Christopher S. Weaver; Michael P. Walsh. Air Pollution from Motor Vehicles: Standards and Technologies for Controlling Emissions. World Bank Publications. 1996: 227 [2019-12-24]. ISBN 978-0-8213-3444-7. (原始内容存档于2021-07-04).
- ^ Electric car boom – Fiji Times Online. Fijitimes.com. 2010-03-04 [2010-06-26]. (原始内容存档于2012-07-30).
- ^ FACT SHEET: Obama Administration Announces Federal and Private Sector Actions to Accelerate Electric Vehicle Adoption in the United States. Energy.gov. [3 June 2021]. (原始内容存档于3 June 2021).
- ^ EU policy-makers seek to make electric transport a priority. Reuters. 3 February 2015 [2 July 2017]. (原始内容存档于23 February 2017).
- ^ The electric-vehicle outlook is stronger in China and Europe than in the United States | McKinsey & Company. www.mckinsey.com. [2021-06-06]. (原始内容存档于6 June 2021) (英语).
- ^ Electric Vehicle (EV) Industry Statistics and Forecasts. EVhype. 2022-08-30 [2022-10-31]. (原始内容存档于2023-03-26).
- ^ Electric vehicles. Deloitte Insights. [2021-06-06]. (原始内容存档于6 June 2021) (英语).
- ^ Rajper, Sarmad Zaman; Albrecht, Johan. Prospects of Electric Vehicles in the Developing Countries: A Literature Review. Sustainability. January 2020, 12 (5): 1906. doi:10.3390/su12051906
.
- ^ Prospects for electric vehicle deployment – Global EV Outlook 2021 – Analysis. IEA. [2021-07-29]. (原始内容存档于29 July 2021) (英国英语).
5. 延伸阅读 | Further reading
6. 外部链接 | External links
Media related to Electrically powered vehicles at Wikimedia Commons / 维基共享资源上的相关多媒体资源:电动载具
电动车解说(简体中文)(繁体中文)(英文)
分享到: