Hydrogen production(制氢;氢气生产)- 英文维基百科词条

英文词条原文链接(无法从中国内地访问):请点击这里访问
辽观搬运时进行了必要的合规化处理,以使其能够在中国内地上传。

维基百科(Wikipedia)是美国维基媒体基金会的互联网百科项目,其内容可能受到立场、信息来源等因素影响,请客观看待。正文内容不代表译者观点。

辽观提供的翻译仅供参考。文中可能包含无法从中国内地访问的链接。

辽观所搬运的词条文本与维基百科一道同样遵循CC-BY-SA 4.0协议,在符合协议要求的情况下您可以免费使用其内容(包括商用)。图片和视频可能遵循不同的共享协议。本文涉及的共享协议

1. 正文(发布于知乎专栏)

请点击这里访问

2. 参见(维基百科的相关词条)| See also

Wikimedia Commons has media related to Hydrogen production.

3. 参考文献 | References

【Sources(来源文献)】The Future of HydrogenInternational Energy Agency. 2019.

【延伸阅读(Further reading)】Francesco Calise; et al., eds. (2019). Solar Hydrogen Production. Academic Press. ISBN 978-0-12-814853-2.

  1. ^ Reed, Stanley; Ewing, Jack (13 July 2021). “Hydrogen Is One Answer to Climate Change. Getting It Is the Hard Part”The New York Times.
  2. ^ Rosenow, Jan (27 September 2022). “Is heating homes with hydrogen all but a pipe dream? An evidence review”Joule6 (10): 2225–2228. Bibcode:2022Joule…6.2225Rdoi:10.1016/j.joule.2022.08.015S2CID 252584593. Article in press.
  3. ^ Bonheure, Mike; Vandewalle, Laurien A.; Marin, Guy B.; Van Geem, Kevin M. (March 2021). “Dream or Reality? Electrification of the Chemical Process Industries”CEP MagazineAmerican Institute of Chemical EngineersArchived from the original on 17 July 2021. Retrieved 6 July 2021.
  4. ^ Griffiths, Steve; Sovacool, Benjamin K.; Kim, Jinsoo; Bazilian, Morgan; Uratani, Joao M. (October 2021). “Industrial decarbonization via hydrogen: A critical and systematic review of developments, socio-technical systems and policy options”Energy Research & Social Science80: 102208. Bibcode:2021ERSS…8002208Gdoi:10.1016/j.erss.2021.102208.
  5. ^ Squadrito, Gaetano; Maggio, Gaetano; Nicita, Agatino (November 2023). “The green hydrogen revolution”Renewable Energy216: 119041. Bibcode:2023REne..21619041Sdoi:10.1016/j.renene.2023.119041.
  6. Jump up to:a b Deign, Jason (2020-06-29). “So, What Exactly Is Green Hydrogen?”GreentechmediaArchived from the original on 2022-03-23. Retrieved 2022-02-11.
  7. ^ Squadrito, Gaetano; Maggio, Gaetano; Nicita, Agatino (November 2023). “The green hydrogen revolution”Renewable Energy216: 119041. Bibcode:2023REne..21619041Sdoi:10.1016/j.renene.2023.119041.
  8. ^ Evans, Simon; Gabbatiss, Josh (30 November 2020). “In-depth Q&A: Does the world need hydrogen to solve climate change?”Carbon BriefArchived from the original on 1 December 2020. Retrieved 1 December 2020.
  9. ^ “Natural Hydrogen: A Potential Clean Energy Source Beneath Our Feet”Yale E360. Retrieved 2024-03-23.
  10. Jump up to:a b c Hassanpouryouzband, Aliakbar; Wilkinson, Mark; Haszeldine, R Stuart (2024). “Hydrogen energy futures – foraging or farming?”Chemical Society Reviews53 (5): 2258–2263. doi:10.1039/D3CS00723Ehdl:20.500.11820/b23e204c-744e-44f6-8cf5-b6761775260dPMID 38323342.
  11. ^ “Hydrogen”IEA. 10 July 2023. “Energy” section. Retrieved 2023-09-21.
  12. ^ Collins, Leigh (2021-05-18). “A net-zero world ‘would require 306 million tonnes of green hydrogen per year by 2050’: IEA | Recharge”Recharge | Latest renewable energy newsArchived from the original on 2021-05-21.
  13. ^ “Global Hydrogen Generation Market Size Report, 2030”.
  14. ^ “Natural Hydrogen Energy LLC”Archived from the original on 2020-10-25. Retrieved 2020-09-29.
  15. ^ “Definition of Green Hydrogen” (PDF). Clean Energy Partnership. Retrieved 2014-09-06.[permanent dead link]
  16. ^ Schneider, Stefan; Bajohr, Siegfried; Graf, Frank; Kolb, Thomas (October 2020). “State of the Art of Hydrogen Production via Pyrolysis of Natural Gas”ChemBioEng Reviews7 (5): 150–158. doi:10.1002/cben.202000014.
  17. ^ Sampson2019-02-11T10:48:00+00:00, Joanna (11 February 2019). “Blue hydrogen for a green future”gasworldArchived from the original on 2019-05-09. Retrieved 2019-06-03.
  18. ^ “Brown coal the hydrogen economy stepping stone | ECT”Archived from the original on 2019-04-08. Retrieved 2019-06-03.
  19. Jump up to:a b “Can a viable industry emerge from the hydrogen shakeout?”The Economist. Retrieved 2023-09-26.
  20. ^ “Hydrogen Color Explained”Sensonic. Retrieved 2023-11-22.
  21. Jump up to:a b national grid. “The hydrogen colour spectrum”National Grid Group. London, United Kingdom. Retrieved 2022-09-29.
  22. ^ “What potential for natural hydrogen?”Energy Observer. Retrieved 2023-07-03.
  23. Jump up to:a b c BMWi (June 2020). The national hydrogen strategy (PDF). Berlin, Germany: Federal Ministry for Economic Affairs and Energy (BMWi). Archived (PDF) from the original on 2020-12-13. Retrieved 2020-11-27.
  24. Jump up to:a b c Van de Graaf, Thijs; Overland, Indra; Scholten, Daniel; Westphal, Kirsten (December 2020). “The new oil? The geopolitics and international governance of hydrogen”Energy Research & Social Science70: 101667. Bibcode:2020ERSS…7001667Vdoi:10.1016/j.erss.2020.101667PMC 7326412PMID 32835007.
  25. ^ Sansom, Robert; Baxter, Jenifer; Brown, Andy; Hawksworth, Stuart; McCluskey, Ian (2020). Transitioning to hydrogen: assessing the engineering risks and uncertainties (PDF). London, United Kingdom: The Institution of Engineering and Technology (IET). Archived (PDF) from the original on 2020-05-08. Retrieved 2020-03-22.
  26. ^ Bruce, S; Temminghoff, M; Hayward, J; Schmidt, E; Munnings, C; Palfreyman, D; Hartley, P (2018). National hydrogen roadmap: pathways to an economically sustainable hydrogen industry in Australia (PDF). Australia: CSIRO. Archived (PDF) from the original on 2020-12-08. Retrieved 2020-11-28.
  27. ^ Department of Earth Sciences (12 September 2022). “Gold hydrogen”Department of Earth Sciences, Oxford University. Oxford, United Kingdom. Retrieved 2022-09-29.
  28. ^ Hassanpouryouzband, Aliakbar; Wilkinson, Mark; Haszeldine, R Stuart (2024). “Hydrogen energy futures – foraging or farming?”Chemical Society Reviews53 (5): 2258–2263. doi:10.1039/D3CS00723Ehdl:20.500.11820/b23e204c-744e-44f6-8cf5-b6761775260dPMID 38323342.
  29. ^ “Actual Worldwide Hydrogen Production from …” Arno A Evers. December 2008. Archived from the original on 2015-02-02. Retrieved 2008-05-09.
  30. ^ Velazquez Abad, A.; Dodds, P.E. (2017). “Production of Hydrogen”. Encyclopedia of Sustainable Technologies. pp. 293–304. doi:10.1016/B978-0-12-409548-9.10117-4ISBN 978-0-12-804792-7.
  31. ^ Dincer, Ibrahim; Acar, Canan (September 2015). “Review and evaluation of hydrogen production methods for better sustainability”. International Journal of Hydrogen Energy40 (34): 11094–11111. Bibcode:2015IJHE…4011094Ddoi:10.1016/j.ijhydene.2014.12.035.
  32. Jump up to:a b c Press, Roman J.; Santhanam, K. S. V.; Miri, Massoud J.; Bailey, Alla V.; Takacs, Gerald A. (2008). Introduction to hydrogen Technology. John Wiley & Sons. p. 249. ISBN 978-0-471-77985-8.
  33. ^ Collodi, Guido (2010-03-11). “Hydrogen Production via Steam Reforming with CO2 Capture” (PDF). CISAP4 4th International Conference on Safety and Environment in the Process Industry. Retrieved 2015-11-28.
  34. ^ “HFCIT Hydrogen Production: Natural Gas Reforming”. U.S. Department of Energy. 2008-12-15.
  35. ^ Badwal, Sukhvinder P. S.; Giddey, Sarbjit S.; Munnings, Christopher; Bhatt, Anand I.; Hollenkamp, Anthony F. (24 September 2014). “Emerging electrochemical energy conversion and storage technologies”Frontiers in Chemistry2: 79. Bibcode:2014FrCh….2…79Bdoi:10.3389/fchem.2014.00079PMC 4174133PMID 25309898.
  36. ^ Werner Zittel; Reinhold Wurster (1996-07-08). “Chapter 3: Production of Hydrogen. Part 4: Production from electricity by means of electrolysis”HyWeb: Knowledge – Hydrogen in the Energy Sector. Ludwig-Bölkow-Systemtechnik GmbH. Archived from the original on 2007-02-07. Retrieved 2010-10-01.
  37. ^ Bjørnar Kruse; Sondre Grinna; Cato Buch (2002-02-13). “Hydrogen – Status and Possibilities”. The Bellona Foundation. Archived from the original (PDF) on 2011-07-02. Efficiency factors for PEM electrolysers up to 94% are predicted, but this is only theoretical at this time.
  38. ^ “high-rate and high efficiency 3D water electrolysis”. Grid-shift.com. Archived from the original on 2012-03-22. Retrieved 2011-12-13.
  39. ^ “Wide Spread Adaption of Competitive Hydrogen Solution” (PDF). nelhydrogen.com. Nel ASA. Archived (PDF) from the original on 2018-04-22. Retrieved 22 April 2018.
  40. ^ Philibert, Cédric. “Commentary: Producing industrial hydrogen from renewable energy”iea.org. International Energy Agency. Archived from the original on 22 April 2018. Retrieved 22 April 2018.
  41. ^ IEA H2 2019, p. 37
  42. ^ “How Much Electricity/Water Is Needed to Produce 1 kg of H2 by Electrolysis?”Archived from the original on 17 June 2020. Retrieved 17 June 2020.
  43. ^ Petrova, Magdalena (2020-12-04). “Green hydrogen is gaining traction, but still has massive hurdles to overcome”CNBC. Retrieved 2021-06-20.
  44. ^ “ITM – Hydrogen Refuelling Infrastructure – February 2017” (PDF). level-network.com. Retrieved 17 April 2018.
  45. ^ “Cost reduction and performance increase of PEM electrolysers” (PDF). fch.europa.eu. Fuel Cells and Hydrogen Joint Undertaking. Retrieved 17 April 2018.
  46. ^ Kalamaras, Christos M.; Efstathiou, Angelos M. (2013). “Hydrogen Production Technologies: Current State and Future Developments”Conference Papers in Energy2013: 1–9. doi:10.1155/2013/690627.
  47. ^ “Cost reduction and performance increase of PEM electrolysers” (PDF). fch.europa.eu. Fuel Cell and Hydrogen Joint Undertaking. Retrieved 17 April 2018.
  48. ^ “Report and Financial Statements 30 April 2016” (PDF). itm-power.com. Retrieved 17 April 2018.
  49. ^ “Hydrogen Production: Natural Gas Reforming”energy.gov. US Department of Energy. Retrieved 17 April 2018.
  50. Jump up to:a b Hordeski, M. F. Alternative fuels: the future of hydrogen. 171–199 (The Fairmont Press, inc., 2007).
  51. ^ Badwal, Sukhvinder P.S.; Giddey, Sarbjit; Munnings, Christopher (2013). “Hydrogen production via solid electrolytic routes”. Wiley Interdisciplinary Reviews: Energy and Environment2 (5): 473–487. Bibcode:2013WIREE…2..473Bdoi:10.1002/wene.50S2CID 135539661.
  52. ^ Sebbahi, Seddiq; Nabil, Nouhaila; Alaoui-Belghiti, Amine; Laasri, Said; Rachidi, Samir; Hajjaji, Abdelowahed (2022). “Assessment of the three most developed water electrolysis technologies: Alkaline Water Electrolysis, Proton Exchange Membrane and Solid-Oxide Electrolysis”. Materials Today: Proceedings66: 140–145. doi:10.1016/j.matpr.2022.04.264.
  53. Jump up to:a b Ogden, J.M. (1999). “Prospects for building a hydrogen energy infrastructure”. Annual Review of Energy and the Environment24: 227–279. doi:10.1146/annurev.energy.24.1.227.
  54. ^ Hauch, Anne; Ebbesen, Sune Dalgaard; Jensen, Søren Højgaard; Mogensen, Mogens (2008). “Highly efficient high temperature electrolysis”. Journal of Materials Chemistry18 (20): 2331–40. doi:10.1039/b718822f.
  55. ^ In the laboratory, water electrolysis can be done with a simple apparatus like a Hofmann voltameter:“Electrolysis of water and the concept of charge”. Archived from the original on 2010-06-13.
  56. ^ “Nuclear power plants can produce hydrogen to fuel the ‘hydrogen economy'” (Press release). American Chemical Society. March 25, 2012. Archived from the original on December 10, 2019. Retrieved March 9, 2013.
  57. ^ Clarke, R.E.; Giddey, S.; Ciacchi, F.T.; Badwal, S.P.S.; Paul, B.; Andrews, J. (2009). “Direct coupling of an electrolyser to a solar PV system for generating hydrogen”. International Journal of Hydrogen Energy34 (6): 2531–42. doi:10.1016/j.ijhydene.2009.01.053.
  58. ^ Luca Bertuccioli; et al. (7 February 2014). “Development of water electrolysis in the European Union” (PDF). Client Fuel Cells and Hydrogen Joint Undertaking. Archived from the original (PDF) on 31 March 2015. Retrieved 2 May 2018.
  59. ^ L. Lao; C. Ramshaw; H. Yeung (2011). “Process intensification: water electrolysis in a centrifugal acceleration field”Journal of Applied Electrochemistry41 (6): 645–656. doi:10.1007/s10800-011-0275-2hdl:1826/6464S2CID 53760672. Retrieved June 12, 2011.
  60. ^ Stensvold, Tore (26 January 2016). «Coca-Cola-oppskrift» kan gjøre hydrogen til nytt norsk industrieventyrTeknisk Ukeblad, .
  61. ^ Stolten, Detlef (Jan 4, 2016). Hydrogen Science and Engineering: Materials, Processes, Systems and Technology. John Wiley & Sons. p. 898. ISBN 9783527674299. Retrieved 22 April 2018.
  62. ^ thyssenkrupp. “Hydrogen from water electrolysis – solutions for sustainability”thyssenkrupp-uhde-chlorine-engineers.com. Archived from the original on 19 July 2018. Retrieved 28 July 2018.
  63. ^ “ITM – Hydrogen Refuelling Infrastructure – February 2017” (PDF). level-network.com. Retrieved 17 April 2018.
  64. ^ “Cost reduction and performance increase of PEM electrolysers” (PDF). fch.europa.eu. Fuel Cells and Hydrogen Joint Undertaking. Retrieved 17 April 2018.
  65. ^ Bjørnar Kruse; Sondre Grinna; Cato Buch (13 February 2002). “Hydrogen—Status and Possibilities” (PDF). The Bellona Foundation. p. 20. Archived from the original on 16 September 2013.
  66. ^ Fickling, David (2 December 2020). “Hydrogen Is a Trillion Dollar Bet on the Future”Bloomberg.comArchived from the original on 2 December 2020. green hydrogen .. current pricing of around $3 to $8 a kilogram .. gray hydrogen, which costs as little as $1
  67. ^ Werner Zittel; Reinhold Wurster (1996-07-08). “Chapter 3: Production of Hydrogen. Part 4: Production from electricity by means of electrolysis”HyWeb: Knowledge – Hydrogen in the Energy Sector. Ludwig-Bölkow-Systemtechnik GmbH.
  68. ^ Bjørnar Kruse; Sondre Grinna; Cato Buch (2002-02-13). “Hydrogen—Status and Possibilities”. The Bellona Foundation. Archived from the original (PDF) on 2011-07-02. Efficiency factors for PEM electrolysers up to 94% are predicted, but this is only theoretical at this time.
  69. ^ “high-rate and high efficiency 3D water electrolysis”. Grid-shift.com. Archived from the original on 2012-03-22. Retrieved 2011-12-13.
  70. ^ “DOE Technical Targets for Hydrogen Production from Electrolysis”energy.gov. US Department of Energy. Retrieved 22 April 2018.
  71. ^ Deign, Jason. “Xcel Attracts ‘Unprecedented’ Low Prices for Solar and Wind Paired With Storage”greentechmedia.com. Wood MacKenzie. Retrieved 22 April 2018.
  72. ^ accessed June 22, 2021
  73. ^ Giddey, S; Kulkarni, A; Badwal, S.P.S (2015). “Low emission hydrogen generation through carbon assisted electrolysis”. International Journal of Hydrogen Energy40 (1): 70–4. Bibcode:2015IJHE…40…70Gdoi:10.1016/j.ijhydene.2014.11.033.
  74. ^ Uhm, Sunghyun; Jeon, Hongrae; Kim, Tae Jin; Lee, Jaeyoung (2012). “Clean hydrogen production from methanol–water solutions via power-saved electrolytic reforming process”. Journal of Power Sources198: 218–22. doi:10.1016/j.jpowsour.2011.09.083.
  75. ^ Ju, Hyungkuk; Giddey, Sarbjit; Badwal, Sukhvinder P.S (2017). “The role of nanosized SnO2 in Pt-based electrocatalysts for hydrogen production in methanol assisted water electrolysis”. Electrochimica Acta229: 39–47. doi:10.1016/j.electacta.2017.01.106.
  76. ^ Ju, Hyungkuk; Giddey, Sarbjit; Badwal, Sukhvinder P.S; Mulder, Roger J (2016). “Electro-catalytic conversion of ethanol in solid electrolyte cells for distributed hydrogen generation”. Electrochimica Acta212: 744–57. doi:10.1016/j.electacta.2016.07.062.
  77. Jump up to:a b Lamy, Claude; Devadas, Abirami; Simoes, Mario; Coutanceau, Christophe (2012). “Clean hydrogen generation through the electrocatalytic oxidation of formic acid in a Proton Exchange Membrane Electrolysis Cell (PEMEC)”. Electrochimica Acta60: 112–20. doi:10.1016/j.electacta.2011.11.006.
  78. Jump up to:a b Badwal, Sukhvinder P. S; Giddey, Sarbjit S; Munnings, Christopher; Bhatt, Anand I; Hollenkamp, Anthony F (2014). “Emerging electrochemical energy conversion and storage technologies”Frontiers in Chemistry2: 79. Bibcode:2014FrCh….2…79Bdoi:10.3389/fchem.2014.00079PMC 4174133PMID 25309898.
  79. ^ Ju, H; Badwal, S.P.S; Giddey, S (2018). “A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production”. Applied Energy231: 502–533. Bibcode:2018ApEn..231..502Jdoi:10.1016/j.apenergy.2018.09.125S2CID 117669840.
  80. ^ Ju, Hyungkuk; Badwal, Sukhvinder; Giddey, Sarbjit (2018). “A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production”. Applied Energy231: 502–533. Bibcode:2018ApEn..231..502Jdoi:10.1016/j.apenergy.2018.09.125S2CID 117669840.
  81. Jump up to:a b Sasidhar, Nallapaneni (30 November 2023). “Carbon Neutral Fuels and Chemicals from Standalone Biomass Refineries”Indian Journal of Environment Engineering3 (2): 1–8. doi:10.54105/ijee.B1845.113223.
  82. ^ http://www.nedstack.com/images/stories/news/documents/20120202_Press%20release%20Solvay%20PEM%20Power%20Plant%20start%20up.pdf Archived 2014-12-08 at the Wayback Machine Nedstack
  83. ^ “Different Gases from Steel Production Processes”Archived from the original on 27 March 2016. Retrieved 5 July 2020.
  84. ^ “Production of Liquefied Hydrogen Sourced by COG” (PDF). Archived (PDF) from the original on 8 February 2021. Retrieved 8 July 2020.
  85. ^ “Hydrogen technologies”www.interstatetraveler.us.
  86. ^ [1][permanent dead link][full citation needed]
  87. ^ “Kværner-process with plasma arc waste disposal technology”. Archived from the original on 2014-03-13. Retrieved 2009-10-13.
  88. ^ “Emissions Advantages of Gasification”National Energy Technology Laboratory. U.S. Department of Energy.
  89. ^ “Emissions from burning coal”U.S. EIA. U.S. Energy Information Administration.
  90. ^ Lee, Woon-Jae; Lee, Yong-Kuk (2001). “Internal Gas Pressure Characteristics Generated during Coal Carbonization in a Coke Oven”. Energy & Fuels15 (3): 618–23. doi:10.1021/ef990178a.
  91. ^ Gemayel, Jimmy El; MacChi, Arturo; Hughes, Robin; Anthony, Edward John (2014). “Simulation of the integration of a bitumen upgrading facility and an IGCC process with carbon capture”. Fuel117: 1288–97. Bibcode:2014Fuel..117.1288Gdoi:10.1016/j.fuel.2013.06.045.
  92. ^ Blain, Loz (2022-10-04). “Oil-eating microbes excrete the world’s cheapest “clean” hydrogen”New Atlas. Retrieved 2022-10-06.
  93. ^ An Introduction to Radiation Chemistry Chapter 7
  94. ^ Nuclear Hydrogen Production Handbook Chapter 8
  95. ^ Li-Hung Lin; Pei-Ling Wang; Douglas Rumble; Johanna Lippmann-Pipke; Erik Boice; Lisa M. Pratt; Barbara Sherwood Lollar; Eoin L. Brodie; Terry C. Hazen; Gary L. Andersen; Todd Z. DeSantis; Duane P. Moser; Dave Kershaw; T. C. Onstott (2006). “Long-Term Sustainability of a High-Energy, Low-Diversity Crustal Biome”Science314 (5798): 479–82. Bibcode:2006Sci…314..479Ldoi:10.1126/science.1127376PMID 17053150S2CID 22420345.
  96. ^ “Dream or Reality? Electrification of the Chemical Process Industries”www.aiche-cep.com. Retrieved 2021-08-22.
  97. ^ Guoxin, Hu; Hao, Huang (May 2009). “Hydrogen rich fuel gas production by gasification of wet biomass using a CO2 sorbent”. Biomass and Bioenergy33 (5): 899–906. doi:10.1016/j.biombioe.2009.02.006.
  98. ^ Ping, Zhang; Laijun, Wang; Songzhe, Chen; Jingming, Xu (January 2018). “Progress of nuclear hydrogen production through the iodine–sulfur process in China”. Renewable and Sustainable Energy Reviews81: 1802–1812. Bibcode:2018RSERv..81.1802Pdoi:10.1016/j.rser.2017.05.275.
  99. ^ Producing hydrogen: The Thermochemical cycles
  100. ^ IEA Energy Technology Essentials – Hydrogen Production & Distribution Archived 2011-11-03 at the Wayback Machine, April 2007
  101. ^ “HTTR High Temperature engineering Test Reactor”. Httr.jaea.go.jp. Archived from the original on 2014-02-03. Retrieved 2014-01-23.
  102. ^ https://smr.inl.gov/Document.ashx?path=DOCS%2FGCR-Int%2FNHDDELDER.pdf Archived 2016-12-21 at the Wayback MachineProgress in Nuclear Energy Nuclear heat for hydrogen production: Coupling a very high/high temperature reactor to a hydrogen production plant. 2009
  103. ^ “Status report 101 – Gas Turbine High Temperature Reactor (GTHTR300C)” (PDF).
  104. ^ “JAEA’S VHTR FOR HYDROGEN AND ELECTRICITY COGENERATION: GTHTR300C” (PDF). Archived from the original (PDF) on 2017-08-10. Retrieved 2013-12-04.
  105. ^ Chukwu, C., Naterer, G. F., Rosen, M. A., “Process Simulation of Nuclear-Produced Hydrogen with a Cu-Cl Cycle”, 29th Conference of the Canadian Nuclear Society, Toronto, Ontario, Canada, June 1–4, 2008. “Process Simulation of Nuclear-Based Thermochemical Hydrogen Production with a Copper-Chlorine Cycle” (PDF). Archived from the original (PDF) on 2012-02-20. Retrieved 2013-12-04.
  106. ^ Report No 40: The ferrosilicon process for the generation of hydrogen
  107. ^ Candid science: conversations with famous chemists, István Hargittai, Magdolna Hargittai, p. 261, Imperial College Press (2000) ISBN 1-86094-228-8
  108. ^ Hemschemeier, Anja; Melis, Anastasios; Happe, Thomas (2009). “Analytical approaches to photobiological hydrogen production in unicellular green algae”Photosynthesis Research102 (2–3): 523–40. Bibcode:2009PhoRe.102..523Hdoi:10.1007/s11120-009-9415-5PMC 2777220PMID 19291418.
  109. ^ “DOE 2008 Report 25 %” (PDF).
  110. ^ Jenvanitpanjakul, Peesamai (February 3–4, 2010). Renewable Energy Technology And Prospect On Biohydrogen Study In Thailand (PDF). Steering Committee Meeting and Workshop of APEC Research Network for Advanced Biohydrogen Technology. TaichungFeng Chia University. Archived from the original (PDF) on July 4, 2013.
  111. ^ Navarro Yerga, Rufino M.; Álvarez Galván, M. Consuelo; Del Valle, F.; Villoria De La Mano, José A.; Fierro, José L. G. (2009). “Water Splitting on Semiconductor Catalysts under Visible-Light Irradiation”. ChemSusChem2 (6): 471–85. Bibcode:2009ChSCh…2..471Ndoi:10.1002/cssc.200900018PMID 19536754.
  112. ^ Navarro, R.M.; Del Valle, F.; Villoria De La Mano, J.A.; Álvarez-Galván, M.C.; Fierro, J.L.G. (2009). “Photocatalytic Water Splitting Under Visible Light: Concept and Catalysts Development”Photocatalytic Technologies. Advances in Chemical Engineering. Vol. 36. pp. 111–43. doi:10.1016/S0065-2377(09)00404-9ISBN 978-0-12-374763-1.
  113. ^ Ropero-Vega, J.L.; Pedraza-Avella, J.A.; Niño-Gómez, M.E. (September 2015). “Hydrogen production by photoelectrolysis of aqueous solutions of phenol using mixed oxide semiconductor films of Bi–Nb–M–O (M=Al, Fe, Ga, In) as photoanodes”. Catalysis Today252: 150–156. doi:10.1016/j.cattod.2014.11.007.
  114. ^ Low, Jingxiang; Yu, Jiaguo; Jaroniec, Mietek; Wageh, Swelm; Al-Ghamdi, Ahmed A. (May 2017). “Heterojunction Photocatalysts”. Advanced Materials29 (20). Bibcode:2017AdM….2901694Ldoi:10.1002/adma.201601694PMID 28220969S2CID 21261127.
  115. ^ Djurišić, Aleksandra B.; He, Yanling; Ng, Alan M. C. (March 2020). “Visible-light photocatalysts: Prospects and challenges”APL Materials8 (3): 030903. Bibcode:2020APLM….8c0903Ddoi:10.1063/1.5140497.
  116. Jump up to:a b Häussinger, Peter; Lohmüller, Reiner; Watson, Allan M. (2011). “Hydrogen, 1. Properties and Occurrence”. Ullmann’s Encyclopedia of Industrial Chemistrydoi:10.1002/14356007.a13_297.pub2ISBN 978-3-527-30673-2.
  117. Jump up to:a b Asadi, Nooshin; Karimi Alavijeh, Masih; Zilouei, Hamid (January 2017). “Development of a mathematical methodology to investigate biohydrogen production from regional and national agricultural crop residues: A case study of Iran”. International Journal of Hydrogen Energy42 (4): 1989–2007. Bibcode:2017IJHE…42.1989Adoi:10.1016/j.ijhydene.2016.10.021.
  118. ^ Tao, Y; Chen, Y; Wu, Y; He, Y; Zhou, Z (2007). “High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose”. International Journal of Hydrogen Energy32 (2): 200–6. Bibcode:2007IJHE…32..200Tdoi:10.1016/j.ijhydene.2006.06.034.
  119. ^ Rajanandam, Brijesh; Kiran, Siva (2011). “Optimization of hydrogen production by Halobacterium salinarium coupled with E coli using milk plasma as fermentative substrate”Journal of Biochemical Technology3 (2): 242–4. Archived from the original on 2013-07-31. Retrieved 2013-03-09.
  120. ^ Asadi, Nooshin; Zilouei, Hamid (March 2017). “Optimization of organosolv pretreatment of rice straw for enhanced biohydrogen production using Enterobacter aerogenes”. Bioresource Technology227: 335–344. Bibcode:2017BiTec.227..335Adoi:10.1016/j.biortech.2016.12.073PMID 28042989.
  121. ^ Percival Zhang, Y-H; Sun, Jibin; Zhong, Jian-Jiang (2010). “Biofuel production by in vitro synthetic enzymatic pathway biotransformation”. Current Opinion in Biotechnology21 (5): 663–9. doi:10.1016/j.copbio.2010.05.005PMID 20566280.
  122. ^ Strik, David P. B. T. B.; Hamelers (Bert), H. V. M.; Snel, Jan F. H.; Buisman, Cees J. N. (2008). “Green electricity production with living plants and bacteria in a fuel cell”. International Journal of Energy Research32 (9): 870–6. Bibcode:2008IJER…32..870Sdoi:10.1002/er.1397S2CID96849691.
  123. ^ Timmers, Ruud (2012). Electricity generation by living plants in a plant microbial fuel cell (PhD Thesis). Wageningen University. ISBN 978-94-6191-282-4.[page needed]
  124. ^ “Aluminum Based Nanogalvanic Alloys for Hydrogen Generation”U.S. Army Combat Capabilities Development Command Army Research Laboratory. Retrieved January 6, 2020.
  125. ^ McNally, David (July 25, 2017). “Army discovery may offer new energy source”U.S. Army. Retrieved January 6, 2020.
  126. ^ Gaucher, Éric C. (February 2020). “New Perspectives in the Industrial Exploration for Native Hydrogen”Elements: An International Magazine of Mineralogy, Geochemistry, and Petrology16 (1): 8–9. Bibcode:2020Eleme..16….8Gdoi:10.2138/gselements.16.1.8.
  127. ^ Hand, Eric. “Hidden hydrogen”science.org. Science. Retrieved 9 December 2023.
  128. ^ “The Potential for Geologic Hydrogen for Next-Generation Energy | U.S. Geological Survey”.
  129. ^ Fernandez, Sonia. “Researchers develop potentially low-cost, low-emissions technology that can convert methane without forming CO2”Phys-Org. American Institute of Physics. Archived from the original on 19 October 2020. Retrieved 19 October 2020.
  130. ^ BASF. “BASF researchers working on fundamentally new, low-carbon production processes, Methane Pyrolysis”United States Sustainability. BASF. Archived from the original on 19 October 2020. Retrieved 19 October 2020.
  131. ^ Schneider, Stefan; Bajohr, Siegfried; Graf, Frank; Kolb, Thomas (October 2020). “State of the Art of Hydrogen Production via Pyrolysis of Natural Gas”ChemBioEng Reviews7 (5): 150–158. doi:10.1002/cben.202000014.
  132. ^ Upham, D. Chester; Agarwal, Vishal; Khechfe, Alexander; Snodgrass, Zachary R.; Gordon, Michael J.; Metiu, Horia; McFarland, Eric W. (17 November 2017). “Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon”Science358 (6365): 917–921. Bibcode:2017Sci…358..917Udoi:10.1126/science.aao5023PMID 29146810S2CID 206663568.
  133. ^ Palmer, Clarke; Upham, D. Chester; Smart, Simon; Gordon, Michael J.; Metiu, Horia; McFarland, Eric W. (January 2020). “Dry reforming of methane catalysed by molten metal alloys”. Nature Catalysis3 (1): 83–89. doi:10.1038/s41929-019-0416-2S2CID 210862772.
  134. ^ Cartwright, Jon. “The reaction that would give us clean fossil fuels forever”NewScientist. New Scientist Ltd. Archived from the original on 26 October 2020. Retrieved 30 October 2020.
  135. ^ Karlsruhe Institute of Technology. “Hydrogen from methane without CO2 emissions”Phys.OrgArchived from the original on 21 October 2020. Retrieved 30 October 2020.
  136. ^ Proceedings hcei.tsc.ru
  137. ^ Lumbers, Brock (2022). “Mathematical modelling and simulation of the thermo-catalytic decomposition of methane for economically improved hydrogen production”International Journal of Hydrogen Energy47 (7): 4265–4283. Bibcode:2022IJHE…47.4265Ldoi:10.1016/j.ijhydene.2021.11.057S2CID 244814932. Retrieved 16 March 2022.
  138. ^ Patlolla, Shashank Reddy; Katsu, Kyle; Sharafian, Amir; Wei, Kevin; Herrera, Omar E.; Mérida, Walter (July 2023). “A review of methane pyrolysis technologies for hydrogen production”. Renewable and Sustainable Energy Reviews181: 113323. Bibcode:2023RSERv.18113323Pdoi:10.1016/j.rser.2023.113323.
  139. ^ Tao, Yongzhen; Chen, Yang; Wu, Yongqiang; He, Yanling; Zhou, Zhihua (1 February 2007). “High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose”. International Journal of Hydrogen Energy32 (2): 200–206. Bibcode:2007IJHE…32..200Tdoi:10.1016/j.ijhydene.2006.06.034INIST 18477081.
  140. ^ “Hydrogen production from organic solid matter”. Biohydrogen.nl. Archived from the original on 2011-07-20. Retrieved 2010-07-05.
  141. ^ Hemschemeier, Anja; Melis, Anastasios; Happe, Thomas (December 2009). “Analytical approaches to photobiological hydrogen production in unicellular green algae”Photosynthesis Research102 (2–3): 523–540. Bibcode:2009PhoRe.102..523Hdoi:10.1007/s11120-009-9415-5PMC 2777220PMID 19291418.
  142. ^ “NanoLogix generates energy on-site with bioreactor-produced hydrogen”Solid State Technology. September 20, 2007. Archived from the original on 2018-05-15. Retrieved 14 May 2018.
  143. ^ “Power from plants using microbial fuel cell” (in Dutch). Archived from the original on 2021-02-08. Retrieved 2010-07-05.
  144. ^ Janssen, H.; Emonts, B.; Groehn, H. G.; Mai, H.; Reichel, R.; Stolten, D. (2001). High-pressure electrolysis, the key technology for efficient H2 production. HYPOTHESIS IV. Kluwer Academic. pp. 172–177. ISBN 978-3-9807963-0-9OCLC 496234379OSTI 20274275.
  145. ^ Carmo, M; Fritz D; Mergel J; Stolten D (2013). “A comprehensive review on PEM water electrolysis”. Journal of Hydrogen Energy38 (12): 4901–4934. Bibcode:2013IJHE…38.4901Cdoi:10.1016/j.ijhydene.2013.01.151.
  146. ^ “2003-PHOEBUS-Pag.9” (PDF). Archived from the original (PDF) on 2009-03-27. Retrieved 2010-07-05.
  147. ^ “Finland exporting TEN-T fuel stations”. December 2015. Archived from the original on 2016-08-28. Retrieved 2016-08-22.
  148. ^ “Steam heat: researchers gear up for full-scale hydrogen plant” (Press release). Science Daily. 2008-09-18. Archived from the original on 2008-09-21. Retrieved 2008-09-19.
  149. ^ “Nuclear Hydrogen R&D Plan” (PDF). U.S. Dept. of Energy. March 2004. Archived from the original (PDF) on 2008-05-18. Retrieved 2008-05-09.
  150. ^ Valenti, Giovanni; Boni, Alessandro; Melchionna, Michele; Cargnello, Matteo; Nasi, Lucia; Bertoni, Giovanni; Gorte, Raymond J.; Marcaccio, Massimo; Rapino, Stefania; Bonchio, Marcella; Fornasiero, Paolo; Prato, Maurizio; Paolucci, Francesco (December 2016). “Co-axial heterostructures integrating palladium/titanium dioxide with carbon nanotubes for efficient electrocatalytic hydrogen evolution”Nature Communications7 (1): 13549. Bibcode:2016NatCo…713549Vdoi:10.1038/ncomms13549PMC 5159813PMID 27941752.
  151. ^ William Ayers, US Patent 4,466,869 Photolytic Production of Hydrogen
  152. Jump up to:a b Navarro Yerga, Rufino M.; Álvarez Galván, M. Consuelo; del Valle, F.; Villoria de la Mano, José A.; Fierro, José L. G. (22 June 2009). “Water Splitting on Semiconductor Catalysts under Visible-Light Irradiation”. ChemSusChem2 (6): 471–485. Bibcode:2009ChSCh…2..471Ndoi:10.1002/cssc.200900018PMID 19536754.
  153. Jump up to:a b Navarro, R.M.; Del Valle, F.; Villoria de la Mano, J.A.; Álvarez-Galván, M.C.; Fierro, J.L.G. (2009). “Photocatalytic Water Splitting Under Visible Light”. Advances in Chemical Engineering – Photocatalytic Technologies. Vol. 36. pp. 111–143. doi:10.1016/S0065-2377(09)00404-9ISBN 978-0-12-374763-1.
  154. ^ Nann, Thomas; Ibrahim, Saad K.; Woi, Pei-Meng; Xu, Shu; Ziegler, Jan; Pickett, Christopher J. (22 February 2010). “Water Splitting by Visible Light: A Nanophotocathode for Hydrogen Production”Angewandte Chemie International Edition49 (9): 1574–1577. doi:10.1002/anie.200906262PMID 20140925.
  155. ^ Yamamura, Tetsushi (August 2, 2015). “Panasonic moves closer to home energy self-sufficiency with fuel cells”Asahi Shimbun. Archived from the original on August 7, 2015. Retrieved 2015-08-02.
  156. ^ “DLR Portal – DLR scientists achieve solar hydrogen production in a 100-kilowatt pilot plant”. Dlr.de. 2008-11-25. Archived from the original on 2013-06-22. Retrieved 2009-09-19.
  157. ^ “353 Thermochemical cycles” (PDF). Archived (PDF) from the original on 2009-02-05. Retrieved 2010-07-05.
  158. ^ UNLV Thermochemical cycle automated scoring database (public)[permanent dead link]
  159. ^ “Development of Solar-powered Thermochemical Production of Hydrogen from Water” (PDF). Archived (PDF) from the original on 2007-04-17. Retrieved 2010-07-05.
  160. ^ “Bellona-HydrogenReport”. Interstatetraveler.us. Archived from the original on 2016-06-03. Retrieved 2010-07-05.
  161. ^ https://www.hfpeurope.org/infotools/energyinfos__e/hydrogen/main03.html[permanent dead link]
  162. ^ Prinzhofer, Alain; Tahara Cissé, Cheick Sidy; Diallo, Aliou Boubacar (October 2018). “Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali)”. International Journal of Hydrogen Energy43 (42): 19315–19326. Bibcode:2018IJHE…4319315Pdoi:10.1016/j.ijhydene.2018.08.193S2CID 105839304.
  163. ^ Larin, Nikolay; Zgonnik, Viacheslav; Rodina, Svetlana; Deville, Eric; Prinzhofer, Alain; Larin, Vladimir N. (September 2015). “Natural Molecular Hydrogen Seepage Associated with Surficial, Rounded Depressions on the European Craton in Russia”. Natural Resources Research24 (3): 369–383. Bibcode:2015NRR….24..369Ldoi:10.1007/s11053-014-9257-5S2CID 128762620.
  164. ^ Gaucher, Eric C. (1 February 2020). “New Perspectives in the Industrial Exploration for Native Hydrogen”Elements16 (1): 8–9. Bibcode:2020Eleme..16….8Gdoi:10.2138/gselements.16.1.8.
  165. ^ Truche, Laurent; Bazarkina, Elena F. (2019). “Natural hydrogen the fuel of the 21 st century”E3S Web of Conferences98: 03006. Bibcode:2019E3SWC..9803006Tdoi:10.1051/e3sconf/20199803006.
  166. ^ “The Potential for Geologic Hydrogen for Next-Generation Energy | U.S. Geological Survey”.
  167. ^ “Executive summary – Global Hydrogen Review 2023 – Analysis”IEA. Retrieved 2024-05-13.
  168. ^ Hessler, Uwe (December 6, 2020). “First element in periodic table: Why all the fuss about hydrogen?”dw.com. Deutsche Welle.
  169. ^ “Air Products to Build Europe’s Largest Blue Hydrogen Plant and Strengthens Long-term Agreement”Air Products press release, November 6, 2023. Retrieved 2023-11-14.
  170. ^ Robert W. Howarth; Mark Z. Jacobson (12 August 2021). “How green is blue hydrogen?”. Energy Science & Engineeringdoi:10.1002/ESE3.956ISSN 2050-0505Wikidata Q108067259.
  171. ^ Antonini, Cristina; Treyer, Karin; Streb, Anne; van der Spek, Mijndert; Bauer, Christian; Mazzotti, Marco (2020). “Hydrogen production from natural gas and biomethane with carbon capture and storage – A techno-environmental analysis”. Sustainable Energy & Fuels4 (6): 2967–2986. doi:10.1039/D0SE00222Dhdl:20.500.11850/422246.
  172. ^ “Facts on low-carbon hydrogen – A European perspective”, ZEP Oct 2021. Confirmed 2023-12-12.
  173. ^ “New Horizons for Hydrogen” (PDF). Research Review (2). National Renewable Energy Laboratory: 2–9. April 2004.
  174. ^ Dvorak, Phred, “WSJ News Exclusive: Green Hydrogen Gets a Boost in the U.S. With $4 Billion Plant: The planned factory, a joint venture by Air Products and AES …”], Wall Street Journal, December 8, 2022. Retrieved 2023-11-14. (subscription required)
  175. ^ Collins, Leigh (25 January 2022). “World first for nuclear-powered pink hydrogen as commercial deal signed in Sweden | Recharge”Recharge | Latest renewable energy news.
  176. Jump up to:a b Collins, Leigh (19 March 2020). “A wake-up call on green hydrogen: the amount of wind and solar needed is immense | Recharge”Recharge | Latest renewable energy newsArchived from the original on 4 June 2021.
  177. ^ “How does the energy crisis affect the transition to net zero?”European Investment Bank. Retrieved 2022-12-23.
  178. ^ “Hydrogen – Fuels & Technologies”IEA. Retrieved 2022-12-23.
  179. ^ Castelvecchi, Davide (2022-11-16). “How the hydrogen revolution can help save the planet — and how it can’t”. Nature611 (7936): 440–443. Bibcode:2022Natur.611..440Cdoi:10.1038/d41586-022-03699-0PMID 36385542S2CID 253525130.
  180. ^ “Hydrogen”energy.ec.europa.eu. Retrieved 2022-12-23.
  181. ^ Ritchie, Hannah. “How many people does synthetic fertilizer feed?”Our World in Data. Global Change Data Lab. Retrieved 16 September 2021.

分享到: